ÌâÄ¿ÄÚÈÝ
11£®£¨¢ñ£© Èôk=-1£¬m=$\sqrt{2}$£¬µãPÔÚÖ±ÏßABÉÏÇó|PF1|+|PF2|µÄ×îСֵ£»
£¨¢ò£© ÈôÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¾¹ýµãF2£¬ÇÒÔµãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{{2\sqrt{5}}}{5}$£®
£¨1£©ÇóÖ±ÏßABµÄ·½³Ì£»
£¨2£©ÔÚÍÖÔ²CÉÏÇóµãQµÄ×ø±ê£¬Ê¹µÃ¡÷ABQµÄÃæ»ý×î´ó£®
·ÖÎö £¨¢ñ£©Çó³öÍÖÔ²µÄ½¹µã×ø±ê£¬Ö±ÏßABµÄ·½³Ì£¬Çó³öF2¹ØÓÚÖ±ÏßABµÄ¶Ô³Æ${F}_{2}¡ä£¨\sqrt{2}£¬\sqrt{2}-1£©$£¬È»ºóÇó½â|PF1|+|PF2|µÄ×îСֵ£®
£¨¢ò£©£¨1£©ÉèµãA£¬BµÄ×ø±ê·Ö±ðΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÀûÓÃÔµãOµ½Ö±ÏßABµÄ¾àÀëµÃµ½m¡¢kµÄ¹ØÏµ£¬ÁªÁ¢y=kx+mÓë$\frac{x^2}{2}+{y^2}=1$£¬Í¨¹ýΤ´ï¶¨ÀíÒÔ¼°$\overrightarrow{A{F_2}}•\overrightarrow{B{F_2}}=0$£¬Çó³öm¡¢kµÄÖµ£¬È»ºóÇó³öABµÄ·½³Ì£®
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬|AB|ÊǶ¨Öµ£¬µ±ÍÖÔ²CÉϵĵãQʹµÃ¡÷ABQµÄÃæ»ý×î´óʱ£¬µãQµ½Ö±ÏßABµÄ¾àÀëΪ×î´ó£¬¼´µãQΪÔÚÖ±ÏßABµÄÏ·½Æ½ÐÐÓÚABÇÒÓëÍÖÔ²CÏàÇеÄÇе㣮ÉèÆ½ÐÐÓÚABÇÒÓëÍÖÔ²CÏàÇеÄÇÐÏß·½³Ì£¬ÓëÍÖÔ²ÁªÁ¢£¬ÀûÓÃÅбðʽΪ0£¬Çó½â¼´¿É£®
½â´ð ½â£º£¨¢ñ£© ÓÉÍÖÔ²·½³Ì¿ÉµÃ£¬½¹µã×ø±êΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£® ¡£¨1·Ö£©
µ±k=-1£¬$m=\sqrt{2}$ʱ£¬Ö±ÏßABµÄ·½³ÌΪ$y=-x+\sqrt{2}$£® ¡£¨2·Ö£©
Ôò¿ÉµÃF2£¨1£¬0£©¹ØÓÚÖ±ÏßABµÄ¶Ô³ÆµãΪ${F}_{2}¡ä£¨\sqrt{2}£¬\sqrt{2}-1£©$£® ¡£¨3·Ö£©
¡à|PF1|+|PF2|µÄ×îСֵΪ£º$|{F}_{1}{F}_{2}¡ä|=\sqrt{{£¨\sqrt{2}+1£©}^{2}+{£¨\sqrt{2}-1£©}^{2}}=\sqrt{6}$£® ¡£¨4·Ö£©
£¨¢ò£©£º£¨1£©ÉèµãA£¬BµÄ×ø±ê·Ö±ðΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÓÉÔµãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{{2\sqrt{5}}}{5}$£¬µÃ$\frac{|m|}{{\sqrt{1+{k^2}}}}=\frac{{2\sqrt{5}}}{5}$£¬¼´${m^2}=\frac{4}{5}£¨1+{k^2}£©$£®¢Ù¡£¨5·Ö£©
½«y=kx+m´úÈë$\frac{x^2}{2}+{y^2}=1$£¬µÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬
¡à¡÷=16k2m2-4£¨1+2k2£©£¨2m2-2£©=8£¨2k2-m2+1£©£¾0£¬¡à${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}£¬{x_1}{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}$£® ¡£¨6·Ö£©
ÓÉÒÑÖª£¬µÃ$\overrightarrow{A{F_2}}•\overrightarrow{B{F_2}}=0$£¬¼´£¨x1-1£©£¨x2-1£©+y1y2=0£® ¡£¨7·Ö£©
¡à£¨x1-1£©£¨x2-1£©+£¨kx1+m£©£¨kx2+m£©=0£¬
¼´$£¨1+{k^2}£©{x_1}{x_2}+£¨km-1£©£¨{x_1}+{x_2}£©+{m^2}+1=0$£¬
¡à$£¨1+{k^2}£©•\frac{{2{m^2}-2}}{{1+2{k^2}}}+£¨km-1£©•\frac{-4km}{{1+2{k^2}}}+{m^2}+1=0$£¬
»¯¼ò£¬µÃ3m2+4km-1=0£®¢Ú¡£¨8·Ö£©
ÓÉ¢Ù¢Ú£¬µÃ${m^2}=\frac{4}{5}[1+{£¨\frac{{1-3{m^2}}}{4m}£©^2}]$£¬¼´11m4-10m2-1=0£¬¡àm2=1£®
¡ßk£¼0£¬¡à$\left\{\begin{array}{l}m=1\\ k=-\frac{1}{2}\end{array}\right.$£¬Âú×ã¡÷=8£¨2k2-m2+1£©£¾0£®
¡àABµÄ·½³ÌΪ$y=-\frac{1}{2}x+1$£® ¡£¨9·Ö£©
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬|AB|ÊǶ¨Öµ£¬µ±ÍÖÔ²CÉϵĵãQʹµÃ¡÷ABQµÄÃæ»ý×î´óʱ£¬µãQµ½Ö±ÏßABµÄ¾àÀëΪ×î´ó£¬¼´µãQΪÔÚÖ±ÏßABµÄÏ·½Æ½ÐÐÓÚABÇÒÓëÍÖÔ²CÏàÇеÄÇе㣮ÉèÆ½ÐÐÓÚABÇÒÓëÍÖÔ²CÏàÇеÄÇÐÏß·½³ÌΪ$y=-\frac{1}{2}x+n£¨n£¼0£©$£¬ÓÉ$\left\{\begin{array}{l}y=-\frac{1}{2}x+n\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$µÃ$\frac{3}{2}{x^2}-2nx+2{n^2}-2=0$£¬¡à¡÷=-8n2+12=0£¬
¡à$n=-\frac{{\sqrt{6}}}{2}$£¬£¨$n=\frac{{\sqrt{6}}}{2}$ÉáÈ¥£©£¬¡£¨11·Ö£©
´Ó¶ø£¬¿ÉµÃQµÄ×ø±êΪ$Q£¨-\frac{{\sqrt{6}}}{3}£¬-\frac{{\sqrt{6}}}{3}£©$£® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Ó㬵㵽ֱÏߵľàÀ빫ʽµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
| A£® | {x|-2¡Üx£¼1} | B£® | {x|-2¡Üx¡Ü2} | C£® | {x|1£¼x¡Ü2} | D£® | {x|x£¼2} |
| A£® | $\frac{1}{2}$ | B£® | $\frac{3}{5}$ | C£® | ln2 | D£® | ln$\frac{5}{2}$ |
| A£® | Èô m¡Î¦Á£¬n¡Î¦Á£¬Ôò m¡În | B£® | Èô¦Á¡Í¦Ã£¬¦Â¡Í¦Ã£¬Ôò ¦Á¡Î¦Â | ||
| C£® | Èôm¡Í¦Á£¬n¡Í¦Á£¬Ôò m¡În | D£® | Èô m¡Î¦Á£¬m¡Î¦Â£¬Ôò ¦Á¡Î¦Â |