题目内容
已知直线l和不重合的两个平面α,β,且l?α,有下面四个命题:
①若l∥β,则α∥β; ②若α∥β,则l∥β;
③若l⊥β,则α⊥β; ④若α⊥β,则l⊥β
其中真命题的序号是( )
①若l∥β,则α∥β; ②若α∥β,则l∥β;
③若l⊥β,则α⊥β; ④若α⊥β,则l⊥β
其中真命题的序号是( )
分析:选项①可得α与β可平行,可相交,错误;选项②若α∥β,由面面平行的性质必有l∥β,正确;选项③由线面垂直的判定定理可得,正确;选项④l可能在β内,可能与β平行,可能相交,推不出l⊥β,错误.
解答:解:由题意可得:选项①若l∥β,则α与β可平行,可相交,故错误;
选项②若α∥β,由面面平行的性质则必有l∥β,故正确;
选项③若l⊥β,则由线面垂直的判定定理可得α⊥β,故正确;
选项④若α⊥β,则l可能在β内,可能与β平行,可能相交,推不出l⊥β,故错误.
故选B
选项②若α∥β,由面面平行的性质则必有l∥β,故正确;
选项③若l⊥β,则由线面垂直的判定定理可得α⊥β,故正确;
选项④若α⊥β,则l可能在β内,可能与β平行,可能相交,推不出l⊥β,故错误.
故选B
点评:本题考查命题真贱的判断与应用,涉及空间中的线面位置关系,属基础题.
练习册系列答案
相关题目