题目内容
若空间三条直线a、b、c满足a⊥b,b∥c,则直线a与c
A.
一定平行
B.
一定相交
C.
一定是异面直线
D.
一定垂直
如果复数(b∈R)的实部与虚部互为相反数,则b=
0
1
-1
±1
已知椭圆+=1(a>b>0)和直线L:-=1,椭圆的离心率e=,直线L与坐标原点的距离为.
(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.
已知函数f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期为
(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时f(x)的值域.
已知i是虚数单位,则等于
-i
i
若实数t满足f(t)=-t,则称t是函数f(x)的一个次不动点.设函数f(x)=lnx与函数g(x)=ex(其中e为自然对数的底数)的所有次不动点之和为m,则
m<0
m=0
0<m<1
m>1
如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是线段AD上一点,AM=AB,DM=DC,SM⊥AD.
(Ⅰ)证明:BM⊥平面SMC;
(Ⅱ)设三棱锥C-SBM与四棱锥S-ABCD的体积分别为V1与V,求的值.
已知实数a≠0,给出下列命题:
①函数f(x)=asin(2x+)的图象关于直线对称;
②函数f(x)=asin(2x+)的图象可由g(x)=asin2x的图象向左平移个单位而得到;
③把函数h(x)=asin(x+)的图象上的所有点的纵坐标保持不变,横坐标缩短到原来的倍,可以得到函数f(x)=asin(2x+)的图象;
④若函数f(x)=asin(2x++φ)(x∈R)为偶函数,则φ=kπ+(k∈Z).其中正确命题的序号有________;(把你认为正确的命题的序号都填上).
若函数在区间(1,2)内存在零点,则实数a的取值范围是________.