题目内容
【题目】已知函数
.
(1)求函数
的单调区间;
(2)若
恒成立,试确定实数
的取值范围;
(3)证明:
![]()
【答案】(1)当
时,
在
上是增函数;当
时,
在
上是增函数,在
上是减函数.;(2)
;(3)证明详见解析.
【解析】
试题(1)函数
的定义域为
,分
和
两种情况分类讨论,即可求解函数的单调性;(2)由(1)知
时,
不成立,故
,又由(1)知
的最大值为
,只需
即可,即可求解
;(3)由(2)知,当
时,有
在
恒成立,且
在
上是减函数,进而
,则
,即
,即可证明结论.
试题解析:(1) 函数
的定义域为
,
当
时,
在
上是增函数,
当
时,若
时,有
,
若
时,有
,则
在
上是增函数,在
上是减函数.
(2)由(1)知
时,
在
上是增函数,而
不成立,故
,又由(1)知
的最大值为
,要使
恒成立,则
即可,
即
,得
.
(3)由(2)知,当
时,有
在
恒成立,且
在
上是减函数,
,即
,在
上恒成立,令
,则
,
即
,从而
得证.
练习册系列答案
相关题目
【题目】某城市随机抽取一年(
天)内
天的空气质量指数
的监测数据,结果统计如下:
|
|
|
|
|
|
|
|
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
天数 |
|
|
|
|
|
|
|
(1)若某企业每天由空气污染造成的经济损失
(单位:元)与空气质量指数
(记为
)的关
系式为:
![]()
试估计在本年内随机抽取一天,该天经济损失
大于
元且不超过
元的概率;
(2)若本次抽取的样本数据有
天是在供暖季,其中有
天为重度污染,完成下面
列联表,并判断能否有
的把握认为该市本年空气重度污染与供暖有关?
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季 | > | ||
合计 |
|
附:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![]()