题目内容

椭圆的右焦点F所对应的准线l与对称轴的交点为A,B是线段FA的中点,若以椭圆上的一点M为圆心,线段OF(O为坐标系原点)为半径的圆恰好经过F,B两点,则椭圆的离心率为 ________.


分析:根据题意F(c,0),A(,0),由中点坐标公式得B(,0)又以M为圆心,线段OF=c为半径的圆恰好经过F,B两点,得到M点在x轴上的射影是F,B的中点,再求得到右准线的距离由椭圆的第二定义可解得离心率.
解答:根据题意:F(c,0),A(,0)
∴B(,0)
∵以M为圆心,线段OF=c为半径的圆恰好经过F,B两点,
∴M点在x轴上的身影是F,B的中点
∴其横坐标是:
∴M点到右焦点的距离为:c,到右准线的距离为:||
又M为椭圆上的点
∴e==
故答案为:
点评:本题主要考查椭圆的几何性质,渗透圆后考查等腰三角形,中点坐标公式,得到相关量,来应用椭圆的第二定义求解离心率.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网