题目内容

13.若等差数列{an}的首项${a_1}=C_{5m}^{11-2m}-A_{11-3m}^{2m-2}(m∈{N^*})$,公差是${(\frac{5}{2x}-\frac{2}{5}\root{3}{x^2})^n}$的展开式中的常数项,其中n为7777-15除以19的余数,则等差数列{an}的通项公式an=-4n+104.

分析 由题意列不等式组求得数列首项,再由二项式定理求得n,进一步得到等差数列的公差,代入等差数列的通项公式得答案.

解答 解:由${a_1}=C_{5m}^{11-2m}-A_{11-3m}^{2m-2}(m∈{N^*})$,得
$\left\{\begin{array}{l}{11-2m≤5m}\\{11-3m≥2m-2}\end{array}\right.$,解得$\frac{11}{7}≤m≤\frac{13}{5}$,
∵m∈N*,∴m=2.
则${a}_{1}={C}_{10}^{7}-{A}_{5}^{2}$=100.
又由7777-15=(76+1)77-15=C7707677+C7717676+C7727675+…+C777676+1-15,
可得n=5,则数列的公差d=-4,
从而等差数列的通项公式是an=104-4n,
故答案为:-4n+104.

点评 本题考查等差数列的通项公式,考查了排列组合及二项式定理的应用,综合性较强,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网