题目内容
(1)求AC与PB所成的角余弦值;
(2)求二面角A-MC-B的余弦值.
分析:由“PA⊥底面ABCD,且∠DAB=90°”可知,此题建立空间直角坐标系相当方便.以A为坐标原点,AD长为单位长度,分别以AD、AB、AP为x、y、z轴,建立空间直角坐标系,求出各点坐标计算各题.
(1)利用余弦定理可知:cos<
,
>=
=
.所以,AC与PB所成的角余弦值为
.
(2)在MC上取一点N(x,y,z),要使AN⊥MC,只需
•
=0,所以N点坐标为(
,1,
),∠ANB为所求二面角A-MC-B的平面角,则cos<
,
>=-
,所以所求二面角的余弦值为-
.
另解:可以计算两个平面的法向量分别为:平面AMC的法向量
=(1,-1,2),平面BMC的法向量为
=(1,1,2),cos<
,
>=
,所求二面角A-MC-B的余弦值为-
.
(1)利用余弦定理可知:cos<
| AC |
| PB |
| ||||
|
|
| ||
| 5 |
| ||
| 5 |
(2)在MC上取一点N(x,y,z),要使AN⊥MC,只需
| AN |
| MC |
| 1 |
| 5 |
| 2 |
| 5 |
| AN |
| BN |
| 2 |
| 3 |
| 2 |
| 3 |
另解:可以计算两个平面的法向量分别为:平面AMC的法向量
| n1 |
| n2 |
| n1 |
| n2 |
| 2 |
| 3 |
| 2 |
| 3 |
解答:证明:以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,
).
(1)解:因
=(1,1,0),
=(0,2,-1),
故|
|=
,|
|=
,
•
=2,
所以cos<
,
>=
=
.
所以,AC与PB所成的角余弦值为
.
(2)解:在MC上取一点N(x,y,z),则存在使
=λ
,
=(1-x,1-y,-z),
=(1,0,-
),∴x=1-λ,y=1,z=
λ..
要使AN⊥MC,只需
•
=0即x-
z=0,解得λ=
.
可知当λ=
时,N点坐标为(
,1,
),能使
•
=0.
此时,
=(
,1,
),
=(
,-1,
),有
•
=0,
由
•
=0,
•
=0得AN⊥MC,BN⊥MC.所以∠ANB为
所求二面角A-MC-B的平面角.∵|
|=
,|
|=
,
•
=-
.
∴cos(
,
)=
=-
.故所求的二面角的余弦值为-
.
| 1 |
| 2 |
(1)解:因
| AC |
| PB |
故|
| AC |
| 2 |
| PB |
| 5 |
| AC |
| PB |
所以cos<
| AC |
| PB |
| ||||
|
|
| ||
| 5 |
所以,AC与PB所成的角余弦值为
| ||
| 5 |
(2)解:在MC上取一点N(x,y,z),则存在使
| NC |
| MC |
| NC |
| MC |
| 1 |
| 2 |
| 1 |
| 2 |
要使AN⊥MC,只需
| AN |
| MC |
| 1 |
| 2 |
| 4 |
| 5 |
可知当λ=
| 4 |
| 5 |
| 1 |
| 5 |
| 2 |
| 5 |
| AN |
| MC |
此时,
| AN |
| 1 |
| 5 |
| 2 |
| 5 |
| BN |
| 1 |
| 5 |
| 2 |
| 5 |
| BN |
| MC |
由
| AN |
| MC |
| BN |
| MC |
所求二面角A-MC-B的平面角.∵|
| AN |
| ||
| 5 |
| BN |
| ||
| 5 |
| AN |
| BN |
| 4 |
| 5 |
∴cos(
| AN |
| BN |
| ||||
|
|
| 2 |
| 3 |
| 2 |
| 3 |
点评:本小题考查空间中的异面直线所成的角、二面角、解三角形等基础知识考查空间想象能力和思维能力.
练习册系列答案
相关题目