搜索
题目内容
如图,在直三棱柱
中,
,
分别是
的中点,且
.
(1)求直线
与
所成角的大小;
(2)求直线
与平面
所成角的正弦值.
试题答案
相关练习册答案
(1)
;(2)
.
试题分析:由已知有AC、BC、CC
1
两两互相垂直,故可分别以
、
、
所在直线为
轴建立空间直角坐标系.然后由已知就可写出所需各点的空间坐标.(1)由此就可写出向量
的坐标,然后再由两向量的夹角公式:
求出这两向量的夹角的余弦值,最后转化为对应两直线的夹角大小;只是应该注意两直线的夹角的取值范围是
,而两向量的夹角的取值范围是
;所以求出两向量的夹角的余弦值后取绝对值才是两直线的夹角的余弦值;(2)由中点坐标公式可求得点E的坐标,进而就可写出向量
的坐标,再设平面
的一个法向量为
,由
,就可求出平面
的一个法向量,从而就可求得这两向量夹角的余弦值,注意直线与平面所成的角的正弦值就等于直线的方向向量与平面法向量夹角的余弦值.
试题解析:解:分别以
、
、
所在直线为
轴建立空间直角坐标系.
则由题意可得:
,
,
,
,
,
,
又
分别是
的中点,
,
. 3分
(1)因为
,
,
所以
, 7分
直线
与
所成角的大小为
. 8分
(2)设平面
的一个法向量为
,由
,得
,
可取
, 10分
又
,所以
, 13分
直线
与平面
所成角的正弦值为
. 14分
练习册系列答案
初中毕业生学业水平巩固与提高系列答案
安童教育中考模拟试卷系列答案
考必胜小学毕业升学考试试卷精选系列答案
精华版中考备战策略系列答案
聚焦中考系列答案
新中考全真模拟8套卷系列答案
初中学业考试说明与指导系列答案
中考备战策略系列答案
南京市中考指导书系列答案
中考考前模拟8套卷成功之路系列答案
相关题目
如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,
,且AC=BC.
(1)求证:
平面EBC;
(2)求二面角
的大小.
如图,在直三棱柱中
-A BC中,AB
AC,AB=AC=2,
=4,点D是BC的中点.
(1)求异面直线
与
所成角的余弦值;
(2)求平面
与
所成二面角的正弦值.
已知圆锥母线长为6,底面圆半径长为4,点
是母线
的中点,
是底面圆的直径,底面半径
与母线
所成的角的大小等于
.
(1)当
时,求异面直线
与
所成的角;
(2)当三棱锥
的体积最大时,求
的值.
如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为
,点M,N分别在PA,BD上,且
.
(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.
已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM
∥
平面ACE;若存在,求出PE的长;若不存在,说明理由.
如图,在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;
(Ⅲ)求异面直线AB和PC所成角的大小.
在三棱锥
中,
,
分别是
的中点,
,则异面直线
与
所成的角为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案