题目内容

设函数y=f(x)的定义域为实数集R,对于给定的正数k,定义函数fk(x)=
f(x),(f(x)≤k)
k,(f(x)>k)
,给出函数f(x)=-x2+2,若对于任意的x∈(-∞,+∞),恒有fk(x)=f(x),则(  )
A.k的最大值为2B.k的最小值为2
C.k的最大值为1D.k的最小值为1
因为对于任意的x∈(-∞,+∞),恒有fk(x)=f(x),
由已知条件可得,k≥f(x)在(-∞,+∞)恒成立
∴k≥f(x)max
∵f(x)=-x2+2≤2即函数f(x)的最大值为2
∴k≥2 即k的最小值为2
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网