题目内容
【题目】函数
,
.
(Ⅰ)讨论
的极值点的个数;
(Ⅱ)若对于任意
,总有
成立,求实数
的取值范围.
【答案】(Ⅰ)见解析; (Ⅱ)
.
【解析】试题分析:(Ⅰ)求
的导数
,根据
求出
的值域,讨论
的值得出
的正负情况,判断
的单调性和极值点问题;(Ⅱ)
等价于
,由
,利用分离常数法求出
的表达式,再构造函数求最值即可求出结果.
试题解析:
(Ⅰ)
,
,
①当
,即
时,
对
恒成立,
在
单调增,
没有极值点;
②当
,即
时,方程
有两个不等正数解
,
![]()
不妨设
,则当
时,
增;
时,
减;
时,
增,所以
分别为
极大值点和极小值点,
有两个极值点.
综上所述,当
时,
没有极值点;当
时,
有两个极值点.
(Ⅱ)
,由
,即
对于
恒成立,设
,
,
,
时,
减,
时,
增,
,
.
练习册系列答案
相关题目
【题目】2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
| 169 | 178 | 166 | 175 | 180 |
| 75 | 80 | 77 | 70 | 81 |
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素
满足:
,且
时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.