题目内容

4.三棱锥P-ABC中,∠APB=∠BPC=∠CPA=90°,M在△ABC内,∠MPA=∠MPB=60°,则∠MPC=45°.

分析 过M做平面PBC的垂线,交平面PBC于Q,连接PQ,由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=$\frac{\sqrt{6}}{3}$,从而可得cos∠QPC=$\frac{\sqrt{3}}{3}$,再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,即可求∠MPC.

解答 解:如图,过M做平面PBC的垂线,交平面PBC于Q,连接PQ.
∵∠APB=∠APC=90°,∴AP⊥平面PBC,
∵MQ⊥平面PBC,∴AP∥MQ,
∵∠MPA=60°,∴∠MPQ=90°-60°=30°.
由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=$\frac{\sqrt{6}}{3}$.
∵∠QPC是∠QPB的余角,∴cos∠QPC=$\frac{\sqrt{3}}{3}$.
再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,得到cos∠MPC=$\frac{\sqrt{2}}{2}$.
∴∠MPC=45°.
故答案为:45°.

点评 本题考查空间角,考查学生分析解决问题的能力,利用好公式是关键,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网