题目内容
【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.
![]()
(1)求证:AD⊥PB;
(2)求点C到平面PAB的距离.
【答案】(1)见解析;(2)![]()
【解析】
(1)取
中点为
,通过勾股定理证明
,再得到
平面
,从而证明
.
(2)根据三棱锥
等体积转化,以
为底,
为高,求出三棱锥
的体积,再求出
的面积,以
为底,
到平面
的距离为高,从而得到
到平面
的距离.
(1)如图,取
中点为
,连接![]()
因为![]()
所以四边形
为正方形.
所以![]()
所以
.
所以![]()
所以![]()
因为
平面
,
平面
,所以
.
又因为![]()
所以
平面
,
而
平面
,所以![]()
(2)连接
,设点
到平面
的距离为
,
则![]()
因为
且![]()
所以
平面
,所以
.
在
中
即
.
所以
.
所以
.
所以
,所以
.
所以点
到平面
的距离为
.
![]()
练习册系列答案
相关题目
【题目】某鲜花店每天制作
、
两种鲜花共
束,每束鲜花的成本为
元,售价
元,如果当天卖不完,剩下的鲜花作废品处理.该鲜花店发现这两种鲜花每天都有剩余,为此整理了过往100天这两种鲜花的日销量(单位:束),得到如下统计数据:
| 48 | 49 | 50 | 51 |
天数 | 25 | 35 | 20 | 20 |
| 48 | 49 | 50 | 51 |
天数 | 40 | 35 | 15 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为
束,求
的分布列.
(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量
束.以销售这两种鲜花的日总利润的期望值为决策依据,在每天所制鲜花能全部卖完与
之中选其一,应选哪个?