题目内容
已知函数f(x)=x3+mx2-m2x+1(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;
(Ⅱ)若斜率为-5的直线是曲线y=f(x)的切线,求此直线方程.
分析:(I)求出导函数,求出导函数等于0的两个根,列出x,f′(x),f(x)的变化情况的表格,求出极大值,列出方程求出m的值.
(II)将(I)求出的m的值代入导函数,利用曲线在切点处的导数值是切线的斜率,令导数等于-5,求出x即切点横坐标,将横坐标代入f(x)求出切点坐标,利用直线方程的点斜式写出切线方程.
(II)将(I)求出的m的值代入导函数,利用曲线在切点处的导数值是切线的斜率,令导数等于-5,求出x即切点横坐标,将横坐标代入f(x)求出切点坐标,利用直线方程的点斜式写出切线方程.
解答:解:(Ⅰ)f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,则x=-m或x=
m,
当x变化时,f’(x)与f(x)的变化情况如下表:
从而可知,当x=-m时,函数f(x)取得极大值9,
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依题意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-
.
又f(-1)=6,f(-
)=
,
所以切线方程为y-6=-5(x+1),或y-
=-5(x+
),
即5x+y-1=0,或135x+27y-23=0.
| 1 |
| 3 |
当x变化时,f’(x)与f(x)的变化情况如下表:
| x | (-∞,-m) | -m | (-m,
|
|
(
| ||||||
| f'(x) | + | 0 | - | 0 | + | ||||||
| f(x) | 递增 | 极大值 | 递减 | 极小值 | 递增 |
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依题意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-
| 1 |
| 3 |
又f(-1)=6,f(-
| 1 |
| 3 |
| 68 |
| 27 |
所以切线方程为y-6=-5(x+1),或y-
| 68 |
| 27 |
| 1 |
| 3 |
即5x+y-1=0,或135x+27y-23=0.
点评:本题考查利用导数求函数的极值的步骤:求出导数;令导数为0求出根;列出表格判断根左右两边导函数的符号;求出极值.考查导数的几何意义:导数在切点处的值是曲线的切线斜率.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|