题目内容
已知函数f(x)=xlnx,g(x)=-x2+2ax-3.
(1)求f(x)在区间[1,3]上的最小值.
(2)若f(x),g(x)在区间[1,3]上单调性相同,求实数α的取值范围.
(3)求证:对任意的α,都有f(x)>
-
.
(1)求f(x)在区间[1,3]上的最小值.
(2)若f(x),g(x)在区间[1,3]上单调性相同,求实数α的取值范围.
(3)求证:对任意的α,都有f(x)>
| x |
| ex |
| 2 |
| e |
(1)函数f(x)=xlnx,f′(x)=lnx+1,当x∈[1,3]时,f′(x)>0,
因此f(x)在[1,3]上为单调递增函数,所以f(x)min=f(1)=0
(2)要求f(x),g(x)在区间[1,3]上单调性相同,而f(x)在[1,3]上为单调递增函数,所以g(x)在区间[1,3]上单调递增,因为g(x)=-x2+2ax-3,g′(x)=-2x+2a,即g′(x)≥0当x∈[1,3]时恒成立,
所以-2x+2a≥0,因此a≥x,当x∈[1,3]时恒成立,
所以a的取值范围是[3,+∞).
(3)函数f(x)=xlnx,f′(x)=lnx+1,可知函数f(x)在(0,+∞)上的最小值为f(
)=-
,
设h(x)=
-
,则h′(x)=
,可知函数h(x)在(0,+∞)上的最大值为h(1)=-
,所以当x∈(0,+∞)时,f(x)≥f(
)=-
=h(1)≥h(x),
综上所述,当x∈(0,+∞)时,f(x)>
-
因此f(x)在[1,3]上为单调递增函数,所以f(x)min=f(1)=0
(2)要求f(x),g(x)在区间[1,3]上单调性相同,而f(x)在[1,3]上为单调递增函数,所以g(x)在区间[1,3]上单调递增,因为g(x)=-x2+2ax-3,g′(x)=-2x+2a,即g′(x)≥0当x∈[1,3]时恒成立,
所以-2x+2a≥0,因此a≥x,当x∈[1,3]时恒成立,
所以a的取值范围是[3,+∞).
(3)函数f(x)=xlnx,f′(x)=lnx+1,可知函数f(x)在(0,+∞)上的最小值为f(
| 1 |
| e |
| 1 |
| e |
设h(x)=
| x |
| ex |
| 2 |
| e |
| 1-x |
| ex |
| 1 |
| e |
| 1 |
| e |
| 1 |
| e |
综上所述,当x∈(0,+∞)时,f(x)>
| x |
| ex |
| 2 |
| e |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|