题目内容
已知椭圆()的左焦点为,则( )
A. B. C. D.
用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是( )
A.方程没有实根
B.方程至多有一个实根
C.方程至多有两个实根
D.方程恰好有两个实根
设满足约束条件:,则下列不等式恒成立的是( )
A. B.
C. D.
如图所示,在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .
已知向量,.若向量的夹角为,则实数=( )
A. B. C.0 D.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据.
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的回归直线方程;
(3)已知该厂技巧前吨甲产品的生产能耗为吨标准煤.试根据(2)求出回归直线方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)
甲、乙、丙、丁四名射击手在选拔赛中的平均环数及其标准差如下表所示,则选送决赛的最佳人选应是_________.
大家知道 ,莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:
(1)试估计该学校学生阅读莫言作品超过50篇的概率.
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?
某同学用“五点法”画函数在某一个周期内的图象时,列表并填入的部分数据如下表:
(1)请求出上表中的,并直接写出函数的解析式;
(2)将的图象沿轴向右平移个单位得到函数,若函数在(其中)上的值域为,且此时其图象的最高点和最低点分别为,求与夹角的大小。