题目内容

过抛物线的焦点,且被圆截得弦最长的直线的方程是________。

 

【答案】

.x+y-1=0

【解析】解:抛物线y2=4x的焦点为(1,0),圆x2+y2-4x+2y=0 即 (x-2)2+(y+1)2=5,圆心为(2,-1),

由弦长公式可知,要使截得弦最长,需圆心到直线的距离最小,故直线过圆心时,弦最长为圆的直径.由两点式得所求直线的方程 y-0/ -1-0 =x-1 /2-1 ,即 x+y-1=0,

故答案为:x+y-1=0.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网