题目内容

已知函数f(x)=x3+ax2+bx(a,b∈R)的图象过点P(1,f(1)),且在点P处的切线的方程为y=8x-6.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求函数f(sinx)的最值.
(Ⅰ)∵点P在切线上,
∴f(1)=2.
∴a+b=1.①(2分)
又函数图象在点P处的切线斜率为8,
∴f'(1)=8,
又f'(x)=3x2+2ax+b,
∴2a+b=5.②(4分)
解由①②组成的方程组,可得a=4,b=-3.(5分)
(Ⅱ)由(Ⅰ)得f'(x)=3x2+8x-3,
令f'(x)>0,可得x<-3或x>
1
3

令f'(x)<0,可得-3<x<
1
3
.(7分)
∴函数f(x)的单调增区间为(-∞,-3),?(
1
3
,+∞)
,单调减区间为(-3,
1
3
)
.(9分)
(Ⅲ)设sinx=t,则问题可以转化为求函数f(t)(-1≤t≤1)的最值,
由(Ⅱ)可知f(t)在(-1,
1
3
)
上是减函数,在(
1
3
,1)
上是增函数.
∴f(t)的最小值为f(
1
3
)=
1
27
+
4
9
-1=-
14
27
.(11分)
又f(-1)=6,f(1)=2,
∴f(t)的最大值为f(-1)=6.
∴函数f(sinx)的最小值为-
14
27
,最大值为6.(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网