ÌâÄ¿ÄÚÈÝ
ÔÚR+Éϵĵݼõº¯Êýf£¨x£©Í¬Ê±Âú×㣺£¨1£©µ±ÇÒ½öµ±x¡ÊM?R+ʱ£¬º¯ÊýÖµf£¨x£©µÄ¼¯ºÏΪ[0£¬2]£»£¨2£©f£¨| 1 |
| 2 |
£¨1£©ÇóÖ¤£º
| 1 |
| 4 |
| 1 |
| 8 |
£¨2£©ÇóÖ¤£ºf-1£¨x1£©•f-1£¨x2£©=f-1£¨x1+x2£©£»
£¨3£©½â²»µÈʽ£ºf-1£¨x2-x£©•f-1£¨x-1£©¡Ü
| 1 |
| 2 |
·ÖÎö£º£¨1£©¸ù¾Ýµ±ÇÒ½öµ±x¡ÊM?R+ʱ£¬º¯ÊýÖµf£¨x£©µÄ¼¯ºÏΪ[0£¬2]£¬ÇÒf£¨
£©=1£¬¶ÔMÖеÄÈÎÒâx1¡¢x2¶¼ÓÐf£¨x1•x2£©=f£¨x1£©+f£¨x2£©£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨2£©¸ù¾Ýy=f£¨x£©ÔÚMÉϵݼõ£¬¿ÉµÃy=f£¨x£©ÔÚMÓз´º¯Êýy=f-1£¨x£©£¬x¡Ê[0£¬2]£¬ÈÎÈ¡x1¡¢x2¡Ê[0£¬2]£¬Éèy1=f-1£¨x1£©£¬y2=f-1£¨x2£©£¬ËùÒÔx1=f£¨y1£©£¬x2=f£¨y2£©£¨y1¡¢y2¡ÊM£©£¬´úÈëf£¨x1•x2£©=f£¨x1£©+f£¨x2£©¼´¿ÉÖ¤µÃ½áÂÛ£»£¨3£©f-1£¨x2-x£©•f-1£¨x-1£©¡Ü
µÈ¼ÛÓÚ£ºf-1£¨x2-x+x-1£©¡Üf-1£¨1£©£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿É°ÑÔ²»µÈʽת»¯Îª
£¬½â´Ë²»µÈʽ×é¼´¿ÉÇóµÃ½á¹û£®
| 1 |
| 2 |
£¨2£©¸ù¾Ýy=f£¨x£©ÔÚMÉϵݼõ£¬¿ÉµÃy=f£¨x£©ÔÚMÓз´º¯Êýy=f-1£¨x£©£¬x¡Ê[0£¬2]£¬ÈÎÈ¡x1¡¢x2¡Ê[0£¬2]£¬Éèy1=f-1£¨x1£©£¬y2=f-1£¨x2£©£¬ËùÒÔx1=f£¨y1£©£¬x2=f£¨y2£©£¨y1¡¢y2¡ÊM£©£¬´úÈëf£¨x1•x2£©=f£¨x1£©+f£¨x2£©¼´¿ÉÖ¤µÃ½áÂÛ£»£¨3£©f-1£¨x2-x£©•f-1£¨x-1£©¡Ü
| 1 |
| 2 |
|
½â´ð£º½â£º£¨1£©Ö¤Ã÷£ºÒòΪ
¡ÊM£¬ÓÖ
=
¡Á
£¬f£¨
£©=1£¬
ËùÒÔf£¨
£©=f£¨
¡Á
£©=f£¨
£©+f£¨
£©=2¡Ê[0£¬2]£¬ËùÒÔ
¡ÊM£¬
ÓÖÒòΪf£¨
£©=f£¨
¡Á
£©=f£¨
£©+f£¨
£©=3∉[0£¬2]£¬ËùÒÔ
∉M£»
£¨2£©ÒòΪy=f£¨x£©ÔÚMÉϵݼõ£¬ËùÒÔy=f£¨x£©ÔÚMÓз´º¯Êýy=f-1£¨x£©£¬x¡Ê[0£¬2]
ÈÎÈ¡x1¡¢x2¡Ê[0£¬2]£¬Éèy1=f-1£¨x1£©£¬y2=f-1£¨x2£©£¬
ËùÒÔx1=f£¨y1£©£¬x2=f£¨y2£©£¨y1¡¢y2¡ÊM£©
ÒòΪx1+x2=f£¨y1£©+f£¨y2£©=f£¨y1y2£©£¬
ËùÒÔy1y2=f-1£¨x1+x2£©£¬ÓÖy1y2=f-1£¨x1£©f-1£¨x2£©£¬
ËùÒÔ£ºf-1£¨x1£©•f-1£¨x2£©=f-1£¨x1+x2£©£»
£¨3£©ÒòΪy=f£¨x£©ÔÚMÉϵݼõ£¬ËùÒÔf-1£¨x£©ÔÚ[0£¬2]ÉÏÒ²µÝ¼õ£¬
f-1£¨x2-x£©•f-1£¨x-1£©¡Ü
µÈ¼ÛÓÚ£ºf-1£¨x2-x+x-1£©¡Üf-1£¨1£©
¼´£º
ËùÒÔ
¡Üx¡Ü2£®
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔf£¨
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
ÓÖÒòΪf£¨
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 8 |
£¨2£©ÒòΪy=f£¨x£©ÔÚMÉϵݼõ£¬ËùÒÔy=f£¨x£©ÔÚMÓз´º¯Êýy=f-1£¨x£©£¬x¡Ê[0£¬2]
ÈÎÈ¡x1¡¢x2¡Ê[0£¬2]£¬Éèy1=f-1£¨x1£©£¬y2=f-1£¨x2£©£¬
ËùÒÔx1=f£¨y1£©£¬x2=f£¨y2£©£¨y1¡¢y2¡ÊM£©
ÒòΪx1+x2=f£¨y1£©+f£¨y2£©=f£¨y1y2£©£¬
ËùÒÔy1y2=f-1£¨x1+x2£©£¬ÓÖy1y2=f-1£¨x1£©f-1£¨x2£©£¬
ËùÒÔ£ºf-1£¨x1£©•f-1£¨x2£©=f-1£¨x1+x2£©£»
£¨3£©ÒòΪy=f£¨x£©ÔÚMÉϵݼõ£¬ËùÒÔf-1£¨x£©ÔÚ[0£¬2]ÉÏÒ²µÝ¼õ£¬
f-1£¨x2-x£©•f-1£¨x-1£©¡Ü
| 1 |
| 2 |
|
¼´£º
|
ËùÒÔ
| 2 |
µãÆÀ£º´ËÌ⿼²é³éÏóº¯Êý¼°ÆäÓ¦Ó㬷´º¯ÊýÒÔ¼°ÀûÓú¯ÊýµÄµ¥µ÷ÐԽⲻµÈʽµÈÎÊÌâ£¬ÌØ±ðÊÇÎÊÌ⣨3£©£¬ÀûÓú¯ÊýµÄµ¥µ÷Ð԰Ѳ»µÈʽf-1£¨x2-x£©•f-1£¨x-1£©¡Ü
ת»¯Îª
£¬ÊǽâÌâµÄ¹Ø¼ü£¬ÌåÏÖÁËת»¯µÄ˼Ï룬ͬʱ¿¼²éÁËѧÉúÁé»îÓ¦ÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦ºÍÔËËãÄÜÁ¦£¬ÊôÖеµÌ⣮
| 1 |
| 2 |
|
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿