题目内容
已知全集I=R,集合M={x|x2+3x+2≥0},N={x|y=lgx},A=(CRM)∪N,B={x|x2+ax+b≤0},若A∩B={x|0<x≤2},A∪B={x|x>-2},求实数a、b的值.
由x2+3x+2≥0得(x+1)(x+2)≥0,∴x≥-1或x≤-2,
M={x|x≥-1或x≤-2},N={x|x>0},
A=(-2,-1)∪(0,+∞),
又∵A∩B={x|0<x≤2},且A∪B={x|x>-2},
∴B=[-1,2],∴-1和2是方程x2+ax+b=0的根,
由韦达定理得:
,解得
.
M={x|x≥-1或x≤-2},N={x|x>0},
A=(-2,-1)∪(0,+∞),
又∵A∩B={x|0<x≤2},且A∪B={x|x>-2},
∴B=[-1,2],∴-1和2是方程x2+ax+b=0的根,
由韦达定理得:
|
|
练习册系列答案
相关题目
已知全集I=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1},k∈R,且(CIA)∩B=B,则实数k的取值范围是( )
| A、[1,2] | B、(0,3) | C、(-∞,0)∪(3,+∞) | D、(-∞,0]∪[3,+∞) |