题目内容
已知不等式
≤a≤
在t∈(0,
]上恒成立,则a的取值范围是________.
分析:令f(t)=
解答:∵t∈(0,
则f(t)=
∴t+
∴f(t)在(0,
∴f(t)max=f(
同理可得g(t)=
∴g(t)min=g(
∴f(t)max≤a≤g(t)min,即
故答案为:[
点评:本题考查基本不等式,考查函数恒成立问题,着重考查双钩函数的性质,考查构造函数与转化的思想,综合性强,属于难题.
练习册系列答案
相关题目
A.选修4-1:几何证明选讲
|
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.求证:(1)l是⊙O的切线;(2)PB平分∠ABD.
![]()
B.选修4-2:矩阵与变换
(本小题满分10分)
已知点A在变换:T:→=作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.
C.选修4-4:坐标系与参数方程
(本小题满分10分)
求曲线C1:被直线l:y=x-所截得的线段长.
D.选修4-5:不等式选讲
(本小题满分10分)
已知a、b、c是正实数,求证:≥.