题目内容
设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=f(| 3 | an+1 |
| 1 |
| bn |
(Ⅰ)求{an}的通项公式和Sn;
(Ⅱ)求证:Tn<
| 1 |
| 3 |
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
分析:(Ⅰ)设出等差数列的公差为d,代入到a3=7和a1+a2+a3=12求出a1和d即可求出数列的通项公式,把通项公式代入到Sn=f(
)中并根据f(x)=x3得到sn的通项公式;
(Ⅱ)由(Ⅰ)知bn=anSn=(3n-2)(3n+1),所以
=
=
(
-
),得到bn的前n项和Tn=
(1-
)<
得证;
(Ⅲ)由(Ⅱ)分别求出T1,Tm和Tn,因为T1,Tm,Tn成等比数列,所以(
)2=
,分别讨论m和n都为正整数且1<m<n即可得到存在并求出此时的m和n的值即可.
| 3 | an+1 |
(Ⅱ)由(Ⅰ)知bn=anSn=(3n-2)(3n+1),所以
| 1 |
| bn |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
(Ⅲ)由(Ⅱ)分别求出T1,Tm和Tn,因为T1,Tm,Tn成等比数列,所以(
| m |
| 3m+1 |
| 1 |
| 4 |
| n |
| 3n+1 |
解答:解:(Ⅰ)设数列{an}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12.
解得a1=1,d=3∴an=3n-2
∵f(x)=x3∴Sn=f(
)=an+1=3n+1.
(Ⅱ)bn=anSn=(3n-2)(3n+1)
∴
=
=
(
-
)∴Tn=
(1-
)<
(Ⅲ)由(2)知,Tn=
∴T1=
,Tm=
,Tn=
∵T1,Tm,Tn成等比数列.
∴(
)2=
即
=
当m=1时,7=
,n=1,不合题意;当m=2时,
=
,n=16,符合题意;
当m=3时,
=
,n无正整数解;当m=4时,
=
,n无正整数解;
当m=5时,
=
,n无正整数解;当m=6时,
=
,n无正整数解;
当m≥7时,m2-6m-1=(m-3)2-10>0,则
<1,而
=3+
>3,
所以,此时不存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
解得a1=1,d=3∴an=3n-2
∵f(x)=x3∴Sn=f(
| 3 | an+1 |
(Ⅱ)bn=anSn=(3n-2)(3n+1)
∴
| 1 |
| bn |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
(Ⅲ)由(2)知,Tn=
| n |
| 3n+1 |
| 1 |
| 4 |
| m |
| 3m+1 |
| n |
| 3n+1 |
∴(
| m |
| 3m+1 |
| 1 |
| 4 |
| n |
| 3n+1 |
| 6m+1 |
| m2 |
| 3n+4 |
| n |
当m=1时,7=
| 3n+4 |
| n |
| 13 |
| 4 |
| 3n+4 |
| n |
当m=3时,
| 19 |
| 9 |
| 3n+4 |
| n |
| 25 |
| 16 |
| 3n+4 |
| n |
当m=5时,
| 31 |
| 25 |
| 3n+4 |
| n |
| 37 |
| 36 |
| 3n+4 |
| n |
当m≥7时,m2-6m-1=(m-3)2-10>0,则
| 6m+1 |
| m2 |
| 3n+4 |
| n |
| 4 |
| n |
所以,此时不存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
点评:考查学生灵活运用等差数列的通项公式及前n项和的公式解决数学问题,利用数列的递推式得到数列的通项公式,以及掌握等比数列性质的能力.
练习册系列答案
相关题目