题目内容
【题目】在三棱柱
中,侧面
为矩形,
,
,
为
的中点,
与
交于点
,
侧面
.
![]()
(1)证明:
;
(2)若
,求直线
与平面
所成角的正弦值.
【答案】(1)证明过程详见解析;(2)
.
【解析】试题分析:
(1)利用题意首先证得:
平面
,结合线面垂直的定义有:
.
(2)建立空间直角坐标系,由空间坐标系求解直线
与平面
所成角的正弦值为
.
试题解析:
证明:(1)由题意可知,在
中,
,
在
中,
,
又因为
,
,所以
,
所以
,
所以
,
又
侧面
,且
侧面
,∴
,
又
与
交于点
,所以
平面
,
又因为
平面
,所以
.
解:(2)如图所示,以
为原点,分别以
,
,
所在的直线为
轴,
轴,
轴,建立空间直角坐标系,
则
,
,
,
,
.
又因为
,所以
,
所以
,
,
,
设平面
的法向量为
,
则由
,得
,
令
,则
,
,
是平面
的一个法向量.
设直线
与平面
所成的角为
,
则
,
故直线
与平面
所成角的正弦值为
.
![]()
练习册系列答案
相关题目
【题目】一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间频率视为概率.
日销售量(枝) |
|
|
|
|
|
销售天数 | 3天 | 5天 | 13天 | 6天 | 3天 |
(1)试求这30天中日销售量低于100枝的概率;
(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.