题目内容

已知函数f(x)=x3+(1-a)x2-a(a+2)x(a∈R),f′(x)为f(x)的导数.
(1)当a=-3时,求y=f(x)的单调区间和极值;
(2)设,是否存在实数,对于任意的x1∈[-1,1],存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在,求出的取值范围;若不存在,说明理由.
【答案】分析:(1)当a=-3时,f(x)=x3+4x2-3x,f'(x)=3x2+8x-3,令f'(x)=0得:x1=-3、,由此能求出y=f(x)的单调区间和极值.
(2)在[0,2]上,是增函数,故对于x2∈[0,2],.设.h'(x1)=6x1+2,由h'(x1)=0,得.要使对于任意的x1∈[-1,1],存在x2∈[0,2]使得h(x1)=g(x2)成立,只需在[-1,1]上,-,由此能求出实数a的范围.
解答:解:(1)当a=-3时,f(x)=x3+4x2-3x,f'(x)=3x2+8x-3,
令f'(x)=0得:x1=-3、
所以f(x)在单调递减.在单调递增   
所以f(x)极大=f(-3)=18,f(x)极小=
(2)在[0,2]上是增函数,故对于x2∈[0,2],
.h'(x1)=6x1+2,
由h'(x1)=0,得
要使对于任意的x1∈[-1,1],存在x2∈[0,2]使得h(x1)=g(x2)成立,只需在[-1,1]上,
-
在(-1,-)上h′(x1)<0,在(-,1)上h′(x1)>0,
时,h(x1)有极小值
∵h(-1)=1-a2-2a,h(1)=5-a2-2a,
∵在[-1,1]上,h(x1)只有一个极小值,
故h(x1)的最小值为-

解得-2≤a≤0.
点评:本题考查函数的单调区间和极值的求法,考查满足条件的实数的取值范围的求法.解题时要认真审题,仔细解答,注意导数的性质的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网