题目内容

6.在△ABC中,角A、B、C的对边分别为a、b、c,$sinA=\frac{{\sqrt{7}}}{4}$,a=2,sinC=2sinB,则b=$\sqrt{2}$或$\frac{\sqrt{2}}{2}$.

分析 由条件利用同角三角函数的基本关系求得cosA的值,再根据c=2b 利用余弦定理求得b的值.

解答 解:△ABC中,由$sinA=\frac{{\sqrt{7}}}{4}$,可得cosA=±$\frac{3}{4}$,
若cosA=$\frac{3}{4}$,又a=2,sinC=2sinB,可得c=2b,
再由余弦定理可得 a2=4=b2+(2b)2-2b•2b•cosA=2b2,求得b=$\sqrt{2}$,
若cosA=-$\frac{3}{4}$,又a=2,sinC=2sinB,可得c=2b,
再由余弦定理可得 a2=4=b2+(2b)2-2b•2b•cosA=8b2,求得b=$\frac{\sqrt{2}}{2}$,
故答案为:$\sqrt{2}$或$\frac{\sqrt{2}}{2}$.

点评 本题主要考查正弦定理和余弦定理、同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网