题目内容
【题目】在平面直角坐标系
中,直线
.
(1)若直线
与直线
平行,求实数
的值;
(2)若
,
,点
在直线
上,已知
的中点在
轴上,求点
的坐标.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)根据两直线平行,对应方向向量共线,列方程即可求出
的值;(2)根据
时,直线
的方程设出点
的坐标,由此求出
的中点坐标,再由中点在
轴上求出点
的坐标.
试题解析:(1)∵直线
与直线
平行,
∴
,
∴
,经检验知,满足题意.
(2)由题意可知:
,
设
,则
的中点为
,
∵
的中点在
轴上,∴
,
∴
.
【题型】解答题
【结束】
16
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)根据中点坐标公式求出
中点
的坐标,根据斜率公式可求得
的斜率,利用点斜式可求
边上的中线所在直线的方程;(2)先根据斜率公式求出
的斜率,从而求出
边上的高所在直线的斜率为
,利用点斜式可求
边上的高所在直线的方程.
试题解析:(1)由B(10,4),C(2,-4),得BC中点D的坐标为(6,0),
所以AD的斜率为k=
=8,
所以BC边上的中线AD所在直线的方程为y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直线的斜率为k=
=1,
所以BC边上的高所在直线的斜率为-1,
所以BC边上的高所在直线的方程为y-8=-(x-7),即x+y-15=0.
练习册系列答案
相关题目