题目内容
19.三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1垂直于底面ABC,且AA1=4,则此三棱柱外接球的表面积为( )| A. | $\frac{13}{3}π$ | B. | $\frac{16}{3}π$ | C. | $\frac{42}{3}π$ | D. | $\frac{64}{3}π$ |
分析 由题意推出三棱柱上下底面中心连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,求出球的半径,即可求出外接球的表面积.
解答 解:∵正三棱柱ABC-A1B1C1的中,底面边长为2,高为4,
由题意可得:三棱柱上下底面中心连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,表面积为:4πr2.
球心到底面的距离为2,
底面中心到底面三角形的顶点的距离为:$\frac{2}{3}×\frac{\sqrt{3}}{2}×2$=$\frac{2\sqrt{3}}{3}$,
所以球的半径为r=$\sqrt{4+\frac{4}{3}}$=$\frac{4\sqrt{3}}{3}$.
外接球的表面积为:4πr2=$\frac{64}{3}$π
故选:D.
点评 本题考查空间想象能力,计算能力;三棱柱上下底面中心连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.
练习册系列答案
相关题目
7.已知长方体ABCD-A1B1C1D1的底面ABCD是边长为1的正方形,长方体的另一条棱长为$\frac{1}{2}$,顶点A、B、C、D在半球的底面内,顶点A1、B1、C1、D1在半球球面上,则此半球的体积是( )
| A. | $\frac{\sqrt{2}}{2}$π | B. | $\frac{\sqrt{3}}{4}$π | C. | $\frac{\sqrt{3}}{2}$π | D. | $\sqrt{2}$π |
4.为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人.
(Ⅰ)根据以上数据建立2×2列联表;
(Ⅱ)能否在犯错误不超过0.05的前提下认为该药物有效?
参考
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ (n=a+b+c+d)
(Ⅰ)根据以上数据建立2×2列联表;
(Ⅱ)能否在犯错误不超过0.05的前提下认为该药物有效?
参考
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |