题目内容
9.A为直线3x+4y=10上的一动点,过A作圆x2+y2=1的两条切线,切点分别为P,Q,则四边形OPAQ的面积的最小值是( )| A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | 4 |
分析 由题意可得当点A与圆心的距离最小时,切线长PA、PB最小,此时四边形OPAQ的面积最小,由距离公式和面积公式求解可得.
解答 解:∵圆x2+y2=1的圆心为C(0,0),半径r=1,
当点A与圆心的距离最小时,切线长PA、PB最小,
此时四边形OPAQ的面积最小,
∴圆心到直线3x+4y=10的距离d=$\frac{10}{\sqrt{{3}^{2}+{4}^{2}}}$=2,
∴|PA|=|PB|=$\sqrt{{d}^{2}-{r}^{2}}$=$\sqrt{3}$,
∴四边形OPAQ的面积S=2×$\frac{1}{2}$|PA|r=$\sqrt{3}$,
故选:A.
点评 本题考查圆的切线方程,得出当点A与圆心的距离最小时OPAQ的面积最小是解决问题的关键,属中档题.
练习册系列答案
相关题目
4.若函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则$\frac{f(x)+f(-x)}{2x}<0$的解集为( )
| A. | (-3,3) | B. | (-3,0)∪(3,+∞) | C. | (-∞,-3)∪(0,3) | D. | (-∞,-3)∪(3,+∞) |
1.设方程lnx+x-5=0实根为a,则a所在区间是( )
| A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |