题目内容
cos13°cos133°+sin13°sin47°=
-
| 1 |
| 2 |
-
.| 1 |
| 2 |
分析:把原式的通过诱导公式化简,利用两角和与差的余弦函数公式,由公式及特殊角的三角函数值化简,即可求出值.
解答:解:cos13°cos133°+sin13°sin47°
=-cos13°cos47°+sin13°sin43°
=-cos(47°+13°)
=-cos60°
=-
.
故答案为:-
.
=-cos13°cos47°+sin13°sin43°
=-cos(47°+13°)
=-cos60°
=-
| 1 |
| 2 |
故答案为:-
| 1 |
| 2 |
点评:此题考查了两角和与差的余弦函数公式,以及特殊角的三角函数值.熟练掌握公式是解本题的关键.
练习册系列答案
相关题目
定义在R上的函数f(x)对任意实数x满足f(x+1)=f(-x-1)与f(x+1)=f(x-1),且当x∈[3,4]时,f(x)=x-2,则( )
A、f(sin
| ||||
B、f(sin
| ||||
C、f(sin
| ||||
| D、f(sin1)<f(cos1) |