题目内容
已知数列{an}中,a1=1,an+1=
(n∈N*).
(1)求证:数列{
}为等差数列;
(2)求数列{an}的通项公式an;
(3)设
=
+1,数列{bnbn+2}的前n项和Tn,求证:Tn<
.
| an |
| 2an+1 |
(1)求证:数列{
| 1 |
| an |
(2)求数列{an}的通项公式an;
(3)设
| 2 |
| bn |
| 1 |
| an |
| 3 |
| 4 |
分析:(1)由an+1=
得
-
=2,结合等差数列的定义可得结论;
(2)由(1)及等差数列的通项公式可求得an;
(3)由
=
+1得bn=
,从而可得bnbn+2,拆项后利用裂项相消法可得Tn,易得结论;
| an |
| 2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
(2)由(1)及等差数列的通项公式可求得an;
(3)由
| 2 |
| bn |
| 1 |
| an |
| 1 |
| n |
解答:证明:(1)由an+1=
得:
-
=2,且
=1,
∴数列{
}是以1为首项,以2为公差的等差数列;
(2)由(1)得:
=1+2(n-1)=2n-1,
故an=
;
(3)由
=
+1得:
=2n-1+1=2n,
∴bn=
,
从而:bnbn+2=
=
(
-
),
则Tn=b1b3+b2b4+…+bnbn+2
=
[(1-
)+(
-
)+…+(
-
)]
=
(1+
-
-
)
=
-
(
+
)<
.
| an |
| 2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
∴数列{
| 1 |
| an |
(2)由(1)得:
| 1 |
| an |
故an=
| 1 |
| 2n-1 |
(3)由
| 2 |
| bn |
| 1 |
| an |
| 2 |
| bn |
∴bn=
| 1 |
| n |
从而:bnbn+2=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
则Tn=b1b3+b2b4+…+bnbn+2
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
点评:本题考查由递推式求数列通项、等差关系的确定及数列求和,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|