题目内容

已知数列{an}中,a1=1,an+1=
an
2an+1
(n∈N*).
(1)求证:数列{
1
an
}
为等差数列;
(2)求数列{an}的通项公式an
(3)设
2
bn
=
1
an
+1
,数列{bnbn+2}的前n项和Tn,求证:Tn
3
4
分析:(1)由an+1=
an
2an+1
1
an+1
-
1
an
=2
,结合等差数列的定义可得结论;
(2)由(1)及等差数列的通项公式可求得an
(3)由
2
bn
=
1
an
+1
bn=
1
n
,从而可得bnbn+2,拆项后利用裂项相消法可得Tn,易得结论;
解答:证明:(1)由an+1=
an
2an+1
得:
1
an+1
-
1
an
=2
,且
1
a1
=1

∴数列{
1
an
}
是以1为首项,以2为公差的等差数列;
(2)由(1)得:
1
an
=1+2(n-1)=2n-1

an=
1
2n-1

(3)由
2
bn
=
1
an
+1
得:
2
bn
=2n-1+1=2n

bn=
1
n

从而:bnbn+2=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

则Tn=b1b3+b2b4+…+bnbn+2
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)<
3
4
点评:本题考查由递推式求数列通项、等差关系的确定及数列求和,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网