题目内容

已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求实数a,b的值;并判断f(1)=10是极大值还是极小值.
∵函数f(x)=x3+ax2+bx+a2
∴f'(x)=3x2+2ax+b,
又∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,
f′(1)=0
f(1)=10
解得:
a=4
b=-11
a=-3
b=3

当a=4,b=-11时,f′(x)=3(x+
11
3
)(x-1)
,f(x)在(-∞,-
11
3
)↑
,在(-
11
3
,1)↓
,在(1,+∞)↑
∴f(x)在x=1处取得极小值f(1)=10;
当a=-3,b=3时,f'(x)=3(x-1)2≥0,f(x)在R上单增,无极值.
∴a=4,b=-11;且f(1)=10是极小值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网