题目内容

已知函数f(x)=4x+
a
x+1
,a>-1
,a为常数,
(1)若a=1,证明f(x)≥0;
(2)对任意x∈(1+∞)f(x)>1恒成立,求实数a的取值范围.
(1)a=1时,f(x)=4x+
1
x+1
,因x>-1,所以x+1>0

所以f(x)=4(x+1)+
1
x+1
-4≥4-4=0,所以f(x)≥0

(2)对任意x∈(1,+∞)有f(x)>1,
即4x+
1
x+1
>1得a>(1-4x)(1+x),令g(x)=(1-4x)(1+x),
g(x)=-4x2-3x+1在(1,+∞)上递增,所以g(x)<g(1)=-6,
∴a≥-6,即a的取值范围是[-6,+∞].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网