搜索
题目内容
由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是()
A.归纳推理
B.演绎推理
C.类比推理
D.传递性推理
试题答案
相关练习册答案
C
试题分析:从直线类比到平面,从圆类比到球,即从平面类比到空间.用的是类比推理.故选C.
练习册系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
萌齐小升初强化模拟训练系列答案
相关题目
两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22, ,被称为五角形数,其中第1个五角形数记作
,第2个五角形数记作
,第3个五角形数记作
,第4个五角形数记作
, ,若按此规律继续下去,则
,若
,则
.
1 5 12 22
设
,
,由计算得
,
,
,
,观察上述结果,可推出一般的结论为
.
如图,第n个图形是由正n+2边形“扩展”而来,(n=1、2、3、…),
则在第n个图形中共有( )个顶点。
A.(n+1)(n+2)
B.(n+2)(n+3)
C.
+3n+8
D.12n
已知
的周长为
,面积为
,则
的内切圆半径为
.将此结论类比到空间,已知四面体
的表面积为
,体积为
,则四面体
的内切球的半径
.
已知正三角形内切圆的半径
与它的高
的关系是:
,把这个结论推广到空间正四面体,则正四面体内切球的半径
与正四面体高
的关系是
.
仔细观察下面○和●的排列规律:
○●○○●○○○●○○○○●○○○○○●○○○○○○ ●……
若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是( )
A.13
B.14
C.15
D.16
数列
的前
项和为
.若数列
的各项按如下规则排列:
则
若存在正整数
,使
,则
观察下列各式:a+b=1;a
2
+b
2
=3;a
3
+b
3
=4;a
4
+b
4
=7;a
5
+b
5
=11;…;则a
10
+b
10
=________.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案