题目内容

已知,函数(其中为自然对数的底数).(1)判断函数在区间上的单调性;(2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.

 

【答案】

,则在区间上单调递增

,则,函数在区间上单调递减

故不存在,使曲线

处的切线与轴垂直

【解析】解(1):∵,∴

,得

①若,则在区间上单调递增.

②若,当时,,函数在区间上单调递减,

时,,函数在区间上单调递增,

③若,则,函数在区间上单调递减. ……6分

(2)解:

由(1)可知,当时,

此时在区间上的最小值为,即

,∴

曲线在点处的切线与轴垂直等价于方程有实数解.

,即方程无实数解.

故不存在,使曲线

处的切线与轴垂直……12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网