题目内容
设A(x1,y1),B(x2,y2)是函数f(x)=
+log2
图象上任意两点,且
=
(
+
),已知点M的横坐标为
.
(1)求点M的纵坐标;
(2)若Sn=f(
)+f(
)+…+f(
),其中n∈N*且n≥2,
①求Sn;
②已知
,其中n∈N*,Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.
| 1 |
| 2 |
| x |
| 1-x |
| OM |
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
(1)求点M的纵坐标;
(2)若Sn=f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
①求Sn;
②已知
| 1 |
| 12 |
(1)依题意由
=
(
+
)知M为线段AB的中点.
又∵M的横坐标为
,A(x1,y1),B(x2,y2)即
=
?x1+x2=1
∴y1+y2=1+log2(
•
)=1+log21=1?
=
即M点的纵坐标为定值
.
(2)①由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时Sn=f(
)+f(
)+…+f(
)
∴Sn=f(
)+f(
)+••+f(
)
两式想加得,2Sn=n-1
Sn=
②当n≥2时,an=
=
=4(
-
)
又n=1时,a1=
也适合.
∴an=4(
-
)
∴Tn=
+
++
=4(
-
+
-
++
-
)=4(
-
)=
(n∈N*)
由
≤λ(
+1)恒成立(n∈N*)?λ≥
而
=
≤
=
(当且仅当n=2取等号)
∴λ≥
,∴λ的最小正整数为1.
| OM |
| 1 |
| 2 |
| OA |
| OB |
又∵M的横坐标为
| 1 |
| 2 |
| x1+x2 |
| 2 |
| 1 |
| 2 |
∴y1+y2=1+log2(
| x1 |
| 1-x1 |
| x2 |
| 1-x2 |
| y1+y2 |
| 2 |
| 1 |
| 2 |
即M点的纵坐标为定值
| 1 |
| 2 |
(2)①由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时Sn=f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
∴Sn=f(
| n-1 |
| n |
| n-2 |
| n |
| 1 |
| n |
两式想加得,2Sn=n-1
Sn=
| n-1 |
| 2 |
②当n≥2时,an=
| 1 |
| (Sn+1)(Sn+1+1) |
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
又n=1时,a1=
| 2 |
| 3 |
∴an=4(
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=
| 4 |
| 2×3 |
| 4 |
| 3×4 |
| 4 |
| (n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 2n |
| n+2 |
由
| 2n |
| n+2 |
| n |
| 2 |
| 4n |
| n2+4n+4 |
而
| 4n |
| n2+4n+4 |
| 4 | ||
n+
|
| 4 |
| 4+4 |
| 1 |
| 2 |
∴λ≥
| 1 |
| 2 |
练习册系列答案
相关题目