题目内容
在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售。
⑴试建立销售价y与周次x之间的函数关系式;
⑵若这种时装每件进价Z与周次
次之间的关系为Z=
,1≤
≤16,且
为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?
【答案】
⑴
⑵在第6周时出售每件销售利润最,最大
元.
【解析】
试题分析:(1)![]()
(2)设每件销售利润为
元,
当1≤
≤6时,
= y-Z=2
+18+ 0.125(
-8)
-12=
+14
有
=6时,
最大值=
;
当6<
<12时,
= y-Z="30+" 0.125(
-8)
-12=0.125(
-8)
+18
有
=8时,
最大值=18
当12≤
≤16时
= y-Z=-2
+54+ 0.125(
-8)
-12=0.125(
-16)
+18
有
=16时,
最大值=18
综上所述:在第6周时出售每件销售利润最,最大
元.
考点:二次函数的应用
点评:本题考查的是二次函数的运用,由于计算量大,考生在做这些题的时候要耐心细心.难
度中上.此题是分段函数,题目所涉及的内容在求解过程中,要注意分段函数问题先分段解
决,最后再整理、归纳得出最终结论,另外还要考虑结果是否满足各段的要求,这是解此类
综合应用题目的特点.
练习册系列答案
相关题目