题目内容
定义一种运算a⊕b=
,令f(x)=(cos2x+sinx)⊕
,且x∈[0,
],则函数f(x-
)的最大值是( )
|
| 5 |
| 4 |
| π |
| 2 |
| π |
| 2 |
A.
| B.1 | C.-1 | D.-
|
由于cos2x+sinx=-sin2x+sinx+1=-(sinx-
)2+
≤
∴f(x)=(cos2x+sinx)?
=cos2x+sinx,
f(x-
)=cos2(x-
)+sin(x-
)=sin2x-cosx=-(cos2x+cosx+
)+1+
=-(cosx+
)2+
≤
故选A
| 1 |
| 2 |
| 5 |
| 4 |
| 5 |
| 4 |
∴f(x)=(cos2x+sinx)?
| 5 |
| 4 |
f(x-
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 5 |
| 4 |
| 5 |
| 4 |
故选A
练习册系列答案
相关题目
定义一种运算(a*b)=
,则函数f(x)=(2x*2-x)的值域为( )
|
| A、(0,1) |
| B、(0,1] |
| C、[1,+∞) |
| D、(1,+∞) |