题目内容
【题目】设
的内角
的对边分别为
已知
.
(1)求角
;
(2)若
,
,求
的面积.
【答案】(1)![]()
(2)![]()
【解析】
(1)直接利用正弦定理和三角函数关系式的恒等变换求出结果.(2)利用(1)的结论,余弦定理及三角形的面积公式求出结果.
(1)∵b=a(cosC﹣sinC),
∴由正弦定理得sinB=sinAcosC﹣sinAsinC,
可得sin(A+C)=sinAcosC+cosAsinC=sinAcosC﹣sinAsinC,
∴cosAsinC=﹣sinAsinC,
由sinC≠0,得sinA+cosA=0,
∴tanA=﹣1,
由A为三角形内角,
可得
.
(2)因为
,
所以由正弦定理可得b=
c,
因为a2=b2+c2﹣2bccosA,
,
可得c=
,所以b=2,
所以
.
练习册系列答案
相关题目
【题目】为研究某种图书每册的成本费
(元)与印刷数
(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
15.25 | 3.63 | 0.269 | 2085.5 |
| 0.787 | 7.049 |
表中
,
.
(1)根据散点图判断:
与
哪一个更适宜作为每册成本费
(元)与印刷数
(千册)的回归方程类型?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程(回归系数的结果精确到0.01);
(3)若每册书定价为10元,则至少应该印刷多少册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
)