题目内容

关于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)当m=1时,解此不等式;
(Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?
(1)当m=1时,原不等式可变为0<|x+3|-|x-7|<10,
可得其解集为{x|2<x<7}.
(2)设t=|x+3|-|x-7|,
则由对数定义及绝对值的几何意义知0<t≤10,
因y=lgx在(0,+∞)上为增函数,
则lgt≤1,当t=10,x≥7时,lgt=1,
故只需m>1即可,
即m>1时,f(x)<m恒成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网