题目内容

7.若(2x-1)5=a2x5+a4x4+a2x3+a1x2+a1x+a0,对x∈R均成立,则a2+a4=-120.

分析 先令x=0,可得-1=a0;再令x=1,得1=a5+a4+a3+a2+a1+a0①;再令x=-1,得-a5+a4-a3+a2-a1+a0=-243②;①+②,可得a0+a2+a4=-121,再把a0的值代入,即可求a2+a4

解答 解:令x=0,得-1=a0
令x=1,得1=a5+a4+a3+a2+a1+a0①;
令x=-1,得-a5+a4-a3+a2-a1+a0=-243②;
①+②,得2a4+2a2+2a0=-242,
即a0+a2+a4=-121,
∴-1+a2+a4=-121,
∴a2+a4=-120.
故答案为:-120

点评 本题考查了二项式定理的应用.解题的关键是给x一些特殊值,然后再联立解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网