题目内容

已知数列{an}中,a1=1,
an+1
an
=1-
1
(n+1)2
(n∈N*)
,则
lim
n→∞
an
=
1
2
1
2
分析:a1=1,
an+1
an
=1-
1
(n+1)2
(n∈N*)
,知an+1=an[1-
1
(n+1)2
]
a2=1-
1
22
=
3
4
=
1
2
+
1
4
a3=
3
4
(1-
1
32
)=
2
3
=
1
2
+
1
6
a4=
2
3
(1-
1
42
)=
5
8
=
1
2
+
1
8
,…,an=
1
2
+
1
2n
,由此能求出
lim
n→∞
an
解答:解:∵a1=1,
an+1
an
=1-
1
(n+1)2
(n∈N*)

an+1=an[1-
1
(n+1)2
]

a2=1-
1
22
=
3
4
=
1
2
+
1
4

a3=
3
4
(1-
1
32
)=
2
3
=
1
2
+
1
6

a4=
2
3
(1-
1
42
)=
5
8
=
1
2
+
1
8


an=
1
2
+
1
2n

∴则
lim
n→∞
an
=
lim
n→∞
(
1
2
+
1
2n
)
=
1
2

故答案为:
1
2
点评:本题考查数列的极限的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网