题目内容
已知数列{an}中,a1=1,
=1-
(n∈N*),则
an=
.
| an+1 |
| an |
| 1 |
| (n+1)2 |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
分析:由a1=1,
=1-
(n∈N*),知an+1=an[1-
],a2=1-
=
=
+
,a3=
(1-
)=
=
+
,a4=
(1-
)=
=
+
,…,an=
+
,由此能求出
an.
| an+1 |
| an |
| 1 |
| (n+1)2 |
| 1 |
| (n+1)2 |
| 1 |
| 22 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 32 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 6 |
| 2 |
| 3 |
| 1 |
| 42 |
| 5 |
| 8 |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2n |
| lim |
| n→∞ |
解答:解:∵a1=1,
=1-
(n∈N*),
∴an+1=an[1-
],
∴a2=1-
=
=
+
,
a3=
(1-
)=
=
+
,
a4=
(1-
)=
=
+
,
…
an=
+
,
∴则
an=
(
+
)=
.
故答案为:
.
| an+1 |
| an |
| 1 |
| (n+1)2 |
∴an+1=an[1-
| 1 |
| (n+1)2 |
∴a2=1-
| 1 |
| 22 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
a3=
| 3 |
| 4 |
| 1 |
| 32 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 6 |
a4=
| 2 |
| 3 |
| 1 |
| 42 |
| 5 |
| 8 |
| 1 |
| 2 |
| 1 |
| 8 |
…
an=
| 1 |
| 2 |
| 1 |
| 2n |
∴则
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题考查数列的极限的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|