ÌâÄ¿ÄÚÈÝ

15£®¼ÇµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{$\frac{{S}_{n}}{n}$}ÊǵȲîÊýÁУ»
£¨2£©Èôa1=1£¬¶ÔÈÎÒâµÄn¡ÊN*£¬n¡Ý2£¬¾ùÓÐ$\sqrt{{S}_{n-1}}$£¬$\sqrt{{S}_{n}}$£¬$\sqrt{{S}_{n+1}}$Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬Çóʹ$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$ΪÕûÊýµÄÕýÕûÊýkµÄȡֵ¼¯ºÏ£»
£¨3£©¼Çbn=a${\;}^{{a}_{n}}$£¨a£¾0£©£¬ÇóÖ¤£º$\frac{{b}_{1}+{b}_{2}+¡­+{b}_{n}}{n}$¡Ü$\frac{{b}_{1}+{b}_{n}}{2}$£®

·ÖÎö £¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬Çó³öSn£¬´Ó¶ø$\frac{Sn}{n}$£¬È»ºóÀûÓÃ×÷²î·¨Ö¤Ã÷ÊýÁÐ{$\frac{Sn}{n}$}ÊǵȲîÊýÁУ»
£¨2£©ÓÉÌâÒâ{$\sqrt{{S}_{n}}$}Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬¿ÉµÃ$\sqrt{Sn}$=$\sqrt{{S}_{1}}$+£¨n-1£©¡Á1=n£¬ÔòSn=n2£®´úÈë$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$£¬¿ÉÖªk=1£¬2Âú×ãÌõ¼þ£¬k=3²»Âú×ãÌõ¼þ£»µ±k¡Ý4ʱ£¬ÀûÓÃ×÷²î·¨Ö¤Ã÷1$£¼1+\frac{3k+2}{{k}^{2}}£¼2$£¬µÃ$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$²»ÊÇÕûÊý£¬´Ó¶ø¿ÉµÃÕýÕûÊýkµÄȡֵ¼¯ºÏΪ{1£¬2}£»
£¨3£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬Çó³öan£¬¿ÉµÃbn=a${\;}^{{a}_{n}}$=${a}^{{a}_{1}}•{a}^{£¨n-1£©d}$£¬ÀûÓö¨Òå¿ÉµÃÊýÁÐ{bn}Êǹ«±È´óÓÚ0£¬Ê×Ïî´óÓÚ0µÄµÈ±ÈÊýÁУ¬¼Ç¹«±ÈΪq£¨q£¾0£©£®ÔÙÖ¤Ã÷b1+bn¡Ýbp+bk£¬ÆäÖÐp£¬kΪÕýÕûÊý£¬ÇÒp+k=1+n£®¼´¿ÉÖ¤µÃ$\frac{{b}_{1}+{b}_{2}+¡­+{b}_{n}}{n}$¡Ü$\frac{{b}_{1}+{b}_{n}}{2}$£®

½â´ð £¨1£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬ÔòSn=na1+$\frac{n£¨n-1£©}{2}$d£¬´Ó¶ø$\frac{Sn}{n}$=a1+$\frac{n-1}{2}$d£¬
¡àµ±n¡Ý2ʱ£¬$\frac{Sn}{n}$-$\frac{{S}_{n-1}}{n-1}$=£¨a1+$\frac{n-1}{2}$d£©-£¨a1+$\frac{n-2}{2}$d£©=$\frac{d}{2}$£®
¼´ÊýÁÐ{$\frac{Sn}{n}$}ÊǵȲîÊýÁУ»
£¨2£©½â£º¡ß¶ÔÈÎÒâµÄn¡ÊN*£¬n¡Ý2£¬$\sqrt{{S}_{n-1}}$£¬$\sqrt{{S}_{n}}$£¬$\sqrt{{S}_{n+1}}$¶¼Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬
¡à{$\sqrt{{S}_{n}}$}Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬
ÓÖa1=1£¬¡à$\sqrt{{S}_{1}}=1$£®
¡à$\sqrt{Sn}$=$\sqrt{{S}_{1}}$+£¨n-1£©¡Á1=n£¬ÔòSn=n2£®
¡à$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$=$[\frac{£¨k+1£©£¨k+2£©}{{k}^{2}}]^{2}=£¨1+\frac{3k+2}{{k}^{2}}£©^{2}$£¬
ÏÔÈ»£¬k=1£¬2Âú×ãÌõ¼þ£¬k=3²»Âú×ãÌõ¼þ£»
µ±k¡Ý4ʱ£¬¡ßk2-3k-2=k£¨k-3£©-2¡Ý4£¨4-3£©-2=2£¾0£¬
¡à0£¼$\frac{3k+2}{{k}^{2}}$£¼1£¬
¡à1$£¼1+\frac{3k+2}{{k}^{2}}£¼2$£¬$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$²»ÊÇÕûÊý£®
×ÛÉÏËùÊö£¬ÕýÕûÊýkµÄȡֵ¼¯ºÏΪ{1£¬2}£»
£¨3£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬Ôòan=a1+£¨n-1£©d£¬bn=a${\;}^{{a}_{n}}$=${a}^{{a}_{1}}•{a}^{£¨n-1£©d}$£¬
¡à$\frac{{b}_{n}}{{b}_{n-1}}$=$\frac{{a}^{{a}_{1}}•{a}^{£¨n-1£©d}}{{a}^{{a}_{1}}•{a}^{£¨n-2£©d}}$=ad£¬
¼´ÊýÁÐ{bn}Êǹ«±È´óÓÚ0£¬Ê×Ïî´óÓÚ0µÄµÈ±ÈÊýÁУ¬¼Ç¹«±ÈΪq£¨q£¾0£©£®
ÒÔÏÂÖ¤Ã÷£ºb1+bn¡Ýbp+bk£¬ÆäÖÐp£¬kΪÕýÕûÊý£¬ÇÒp+k=1+n£®
¡ß£¨b1+bn£©-£¨bp+bk£©=b1+b1qn-1-b1qp-1-b1qk-1=b1£¨qp-1-1£©£¨qk-1-1£©£®
µ±q£¾1ʱ£¬¡ßy=qxΪÔöº¯Êý£¬p-1¡Ý0£¬k-1¡Ý0£¬
¡àqp-1-1¡Ý0£¬qk-1-1¡Ý0£¬Ôòb1+bn¡Ýbp+bk£®
µ±q=1ʱ£¬b1+bn=bp+bk£®
µ±0£¼q£¼1ʱ£¬¡ßy=qxΪ¼õº¯Êý£¬p-1¡Ý0£¬k-1¡Ý0£¬
¡àqp-1-1¡Ü0£¬qk-1-1¡Ü0£¬Ôòb1+bn¡Ýbp+bk£®
×ÛÉÏ£¬b1+bn¡Ýbp+bk£¬ÆäÖÐp£¬kΪÕýÕûÊý£¬ÇÒp+k=1+n£®
¡àn£¨b1+bn£©=£¨b1+bn£©+£¨b1+bn£©+¡­+£¨b1+bn£©
¡Ý£¨b1+bn£©+£¨b2+bn-1£©+£¨b3+bn-2£©+¡­+£¨bn+b1£©
=£¨b1+b2+¡­+bn£©+£¨bn+bn-1+¡­+b1£©£¬
¼´$\frac{{b}_{1}+{b}_{2}+¡­+{b}_{n}}{n}$¡Ü$\frac{{b}_{1}+{b}_{n}}{2}$£®

µãÆÀ ±¾ÌâÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²éµÈ²îÊýÁеÄͨÏʽÓëÐÔÖÊ£¬¿¼²éÁË×÷²î·¨Ö¤Ã÷ÊýÁв»µÈʽ£¬¿¼²é·ÖÎöÎÊÌâÓë½â¾öÎÊÌâµÃÄÜÁ¦£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø