题目内容
19.已知数列{an}是等差数列,且1,a2,a3,$\frac{1}{8}$成等比数列,则数列{an}的前n项和Sn=( )| A. | $\frac{n(5-n)}{8}$ | B. | $\frac{n(7-n)}{8}$ | C. | $\frac{n(5-n)}{4}$ | D. | $\frac{n(7-n)}{4}$ |
分析 利用等差数列与等比数列的通项公式及其前n项和公式即可得出.
解答 解:设等差数列{an}的公差为d,由于1,a2,a3,$\frac{1}{8}$成等比数列,可设公比为q,
∴$\frac{1}{8}={q}^{3}$,解得q=$\frac{1}{2}$.
∴a2=$\frac{1}{2}$,a3=$\frac{1}{4}$.
∴$\left\{\begin{array}{l}{{a}_{1}+d=\frac{1}{2}}\\{{a}_{1}+2d=\frac{1}{4}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=\frac{3}{4}}\\{d=-\frac{1}{4}}\end{array}\right.$,
则数列{an}的前n项和Sn=$\frac{3}{4}n$-$\frac{1}{4}×\frac{n(n+1)}{2}$=$\frac{n(5-n)}{8}$.
故选:A.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.函数f(x)=lg(-x2+x+6)的单调递减区间为( )
| A. | $({-∞,\frac{1}{2}})$ | B. | $({\frac{1}{2},+∞})$ | C. | $({-2,\frac{1}{2}})$ | D. | $({\frac{1}{2},3})$ |