题目内容

已知|
a
|=2|
b
|≠0
,且关于x的函数f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x
在R上有极值,则
.
a
.
b
的夹角范围为(  )
A.(0,
π
6
)
B.(
π
6
,π]
C.(
π
3
,π]
D.(
π
3
3
]
f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x
在R上有极值
f′(x)=x2+|
a
|x+
a
b
=0
有不等的根
∴△>0
a
2
-4
a
b
>0

|
a
|
2
-4|
a
||
b
|cosθ>0

|
a
|=2|
b
|≠0

cosθ<
1
2

∵0≤θ≤π
π
3
<θ≤π

故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网