题目内容
已知函数f(x)是R上的奇函数,且单调递减,解关于x的不等式f(tx2-1)+f(t)<0,其中t∈R且t≠1.
因为f(x)是R上的奇函数,
所以f(tx2-1)+f(t)<0可化为f(tx2-1)<-f(t)=f(-t).
又f(x)单调递减,且t≠1,所以tx2-1>-t,即tx2>1-t.….(4分)
①当t>1时,x2>
,而
<0,所以x∈∅;…(6分)
②当0<t<1时,1-t>0,解得x>
或x<-
;…..(8分)
③当t≤0时,tx2≤0,而1-t>0,所以x∈∅.….(10分)
综上,当t≤0或t>1时,不等式无解;
当0<t<1时,不等式的解集为{x|x>
或x<-
}.…(12分)
所以f(tx2-1)+f(t)<0可化为f(tx2-1)<-f(t)=f(-t).
又f(x)单调递减,且t≠1,所以tx2-1>-t,即tx2>1-t.….(4分)
①当t>1时,x2>
| 1-t |
| t |
| 1-t |
| t |
②当0<t<1时,1-t>0,解得x>
|
|
③当t≤0时,tx2≤0,而1-t>0,所以x∈∅.….(10分)
综上,当t≤0或t>1时,不等式无解;
当0<t<1时,不等式的解集为{x|x>
|
|
练习册系列答案
相关题目