题目内容

如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)已知△AF1B的面积为40,求a,b 的值.

【答案】分析:(Ⅰ)直接利用∠F1AF2=60°,求椭圆C的离心率;
(Ⅱ)设|BF2|=m,则|BF1|=2a-m,利用余弦定理以及已知△AF1B的面积为40,直接求a,b 的值.
解答:解:(Ⅰ)∠F1AF2=60°?a=2c?e==
(Ⅱ)设|BF2|=m,则|BF1|=2a-m,
在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2-2|BF2||F1F2|cos120°
?(2a-m)2=m2+a2+am.?m=
△AF1B面积S=|BA||F1F2|sin60°
?=40
?a=10,
∴c=5,b=5
点评:本题考查椭圆的简单性质,余弦定理的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网