题目内容
已知数列{an}(n∈N*)是首项a1=1,公差的等差数列,且2a2,a10,5a5成等比数列,数列{an}前n项和为Sn.(1) 求数列{an}的通项公式;
(2) 若bn=
| 1 | (n+1)an |
分析:(1)根据2a2,a10,5a5成等比数列,求出公差d,即可求出等差数列{an}的通项公式,
(2)根据bn=
,把an=n代入,即可把bn写成bn=
=
=
-
,再进行求和即可.
(2)根据bn=
| 1 |
| (n+1)an |
| 1 |
| (n+1)an |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)依题意可得2a2=2(1+d),a10=1+9d,5a5=5(1+4d),
∵2a2,a10,5a5成等比数列,
∴(1+9d)2=10(1+d)(1+4d),
又∵公差d>0,
解得d=1,
∴an=n,
(2)∵bn=
=
=
-
,
∴Tn=(1-
)+(
-
)+…(
-
)=1-
=
.
∵2a2,a10,5a5成等比数列,
∴(1+9d)2=10(1+d)(1+4d),
又∵公差d>0,
解得d=1,
∴an=n,
(2)∵bn=
| 1 |
| (n+1)an |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题主要考查数列求和的知识点,解答本题的关键是根据2a2,a10,5a5成等比数列求出数列的公差d,本题难度不大.
练习册系列答案
相关题目