题目内容

22、如图,A、B、C、D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(Ⅰ)证明:CD∥AB;
(Ⅱ)延长CD到F,延长DC到G,使得EF=EH,证明:A、B、G、F四点共圆.
分析:(I)根据两条边相等,得到等腰三角形的两个底角相等,根据四点共圆,得到四边形的一个外角等于不相邻的一个内角,高考等量代换得到两个角相等,根据根据同位角相等两直线平行,得到结论.
(II)根据第一问做出的边和角之间的关系,得到两个三角形全等,根据全等三角形的对应角相等,根据平行的性质定理,等量代换,得到四边形的一对对角相等,得到四点共圆.
解答:解:(I)因为EC=ED,
所以∠EDC=∠ECD
因为A,B,C,D四点在同一圆上,
所以∠EDC=∠EBA
故∠ECD=∠EBA,
所以CD∥AB
(Ⅱ)由(I)知,AE=BE,
因为EF=EG,故∠EFD=∠EGC
从而∠FED=∠GEC
连接AF,BG,△EFA≌△EGB,故∠FAE=∠GBE
又CD∥AB,∠FAB=∠GBA,
所以∠AFG+∠GBA=180°
故A,B.G,F四点共圆
点评:本题考查圆内接多边形的性质和判断,考查两直线平行的判断和性质定理,考查三角形全等的判断和性质,考查四点共圆的判断,本题是一个基础题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网