题目内容

若直线4x-3y-2=0与圆x2+y2-2ax+4y+a2-12=0有两个不同的公共点,则实数a的取值范围是(  )
A、-3<a<7B、-6<a<4C、-7<a<3D、-21<a<19
分析:先把圆的方程整理成标准方程,求得圆的半径和圆心坐标,进而根据直线与圆总有两个交点,判断出圆心到直线的距离小于半径,根据点到直线的距离建立不等式求得a的范围.
解答:解:整理圆方程为(x-a)2+(y+2)2=16,
∴圆心坐标(a,-2),半径r=4
∵直线与圆总有两个交点,
∴圆心到直线的距离小于半径
|4a+6-2||
16+9
<4,解得-6<a<4,
故选B.
点评:本题主要考查了直线与圆相交的性质.采用数形结合的方法,解题较好.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网