题目内容
19.已知等差数列{an}的各项均为正数,a1=1,且a2-$\frac{1}{2}$,a3,a6-$\frac{1}{2}$成等比数列.(Ⅰ)求an的通项公式;
(Ⅱ)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Sn.
分析 (I)通过首项和公差表示出通项公式an=1+(n-1)d(d>0),利用a2-$\frac{1}{2}$,a3,a6-$\frac{1}{2}$成等比数列得到关于d的方程,解方程可得公差d,进而可得结论;
(II)通过(I)裂项可知bn=$\frac{4}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),进而并项相加即得结论.
解答 解:(I)由题意设an=1+(n-1)d(d>0),
∵a2-$\frac{1}{2}$,a3,a6-$\frac{1}{2}$成等比数列,
∴${(1+2d)^2}=(1+d-\frac{1}{2})(1+5d-\frac{1}{2})$,
解得:$d=\frac{3}{2},{a_n}=\frac{3n-1}{2}$;
(II)由(I)可知bn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{4}{(3n-1)(3n+2)}$=$\frac{4}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),
∴Sn=$\frac{4}{3}$($\frac{1}{2}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{8}$+…+$\frac{1}{3n-1}$-$\frac{1}{3n+2}$)=$\frac{4}{3}$($\frac{1}{2}$-$\frac{1}{3n+2}$)=$\frac{2n}{3n+2}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,考查裂项相消法,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
9.已知|$\overrightarrow{a}$|=6$\sqrt{3}$,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-9,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是( )
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
7.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是( )
| A. | 模型1的相关指数R2为0.25 | B. | 模型2的相关指数R2为0.50 | ||
| C. | 模型3的相关指数R2为0.80 | D. | 模型4的相关指数R2为0.98 |
14.执行如图程序框图,如果输入的N的值是6,那么输出的p的值是( )

| A. | 105 | B. | 115 | C. | 120 | D. | 720 |
4.从1,2,3,4中任取2个不同的数,则取出的2个数都是偶数的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
8.若一口袋中装有4个白球3个红球,现从中任取两球,则取出的两球中至少有一个白球的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{6}{7}$ | D. | $\frac{2}{21}$ |