题目内容

袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是(  )
A、
3
10
B、
3
5
C、
1
2
D、
1
4
分析:事件“第一次摸到红球且第二次也摸到红球”的概率等于事件“第一次摸到红球”的概率乘以事件“在第一次摸出红球的条件下,第二次也摸到红球”的概率.根据这个原理,可以分别求出“第一次摸到红球”的概率和“第一次摸到红球且第二次也摸到红球”的概率,再用公式可以求出要求的概率.
解答:解:先求出“第一次摸到红球”的概率为:P1=
3
5

设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2
再求“第一次摸到红球且第二次也摸到红球”的概率为P=
3×2
5×4
=
3
10

根据条件概率公式,得:P2=
P
P1
=
1
2

故选:C.
点评:本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,看准确事件之间的联系,正确运用公式,是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网